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A Rigorous Control of Logarithmic Corrections 
in Four-Dimensional Spin Systems. 
I. Trajectory of Effective Hamiltonians 
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Using Gaw~dzki and Kupiainen's rigorous block spin transformation method, 
we study critical phenomena in (f)4 spin systems in four dimensions. In Part I of 
this work we investigate in detail the renormalization group trajectory of the 
system not exactly at the critical point. 

KEY WORDS: ~o 4 spin systems; rigorous block spin transformations; critical 
phenomena; cluster expansion. 

1. I N T R O D U C T I O N  

Rigorous investigations of quan tum field theories and of the critical 
behavior  in spin systems are among  the most  interesting and impor tant  
problems in current theoretical physics. Recent developments in this field 
have established many  fascinating features of the systems, including the 
absence of intermediate phase in d > 2  dimensions, (~ the triviality of (p~ 
field theories in d > 4  dimensions, (2 4 ) the  perturbative nature of those in 
d <  4 dimensions, (5) and the mean-field-like behavior  of critical phenomena  
in (p~ spin systems in d >  4 dimensions. (2"3'6) Taking all these successes into 
account,  it seems that now one of the most  impor tan t  and challenging sub- 
jects in this field is to deal with the systems in marginal  dimensionality 
d =  4, where the triviality of ~o 4 field theory and the existence of logari thmic 
corrections to mean-f ie ld- type  critical behavior  (y) are predicted. Among  
promising at tempts in this direction, (8'91 the Kadanof f  Wilson renor- 
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malization group method, (~~ or its possible rigorous version, has been 
expected to be a powerful tool in investigating such subtle behavior of 
systems with infinite degrees of freedom. 

Recently, in a series of papers, (11 17/ Gawgdzki and Kupiainen have 
presented a new rigorous approach to block spin transformations. Among 
other outstanding results, they have succeeded in tracing rigorously the 
renormalization group flow of the weakly coupled lattice q~4 system (i.e., ~0 4 
spin system in four dimensions) which is exactly at the critical point. ('61 
This, in particular, elucidates the long-range behavior of critical 2cp 4 spin 
systems (e.g., critical exponent equality ~/= 0, a logarithmic correction to 
scaling behavior of energy-energy correlations/~5/), and establishes the 
infrared counterpart of the triviality of 2~0 4 field theory for a sufficiently 
small value of 2. 

In the present and following papers, (18) we extend their analysis to 
study q~] spin systems not exactly at the critical point. In particular, we 
study the critical phenomena that take place when the system approaches 
its critical point (from the high-temperature phase), and establish the 
existence of logarithmic corrections to the behavior predicted by the mean 
field theory. This is accomplished by tracing in detail the mutual d~[erence 
between two renormalization group trajectories in the vicinity of the 
Gaussian fixed point. (17"~91 

The present paper contains the first part of the program, and is 
devoted to the study of renormalization group flow in the ~0 4 system. 

In subsequent work (~8) we extract logarithmic corrections from the 
effective potential thus obtained. 

The organization of this paper is as follows. In Section 1.1 we define 
our model and the block spin transformation, and in Section 1.2 we list 
some notations. Section 2 is devoted to stating our result. In Section 2.1, we 
explain the basic idea of our  analysis; in Section 2.2, we list the inductive 
assumptions used to describe the effective Hamiltonians; and in Section 2.3, 
we give precise statements of our results. 

In Sections 3-7, we present the derivation of the result. 
This paper is not self-contained; some knowledge of Gaw~dzki and 

Kupiainen's program (H'13'16) is assumed. 

1.1. The Model  and Block Spin Transformat ion  

The Gibbs measure of a ~o 4 spin system on a d-dimensional hypercubic 
lattice A o is defined as 

dkt(*) -- Z -~ exp[ - • ~  l-I dq~x (1.1) 
x 
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where x c A o c Z  J, ~o~eR, ~ -  {(Px}~, 

~ o 0 =  4 ~ ((p _ ~oy)2 + ~  _ G(;x~x ) (p2 -A0 47 +T., (1.2) 
I x  _vl = 1 

G(;r is a massless Gaussian propagator with infrared regulator ~ ( - 1) and 0 x X  

Z is determined by the normalization condition ~d/~(O)= 1. For any 
function F of @, its thermal expectation value is defined by 

(F )  - f Fd#(qJ) (1.3) 

We take Ao as a d-dimensional torus of side L N. 
The Kadanoff-Wilson block spin transformation (BST) performed in 

this paper is defined as the following transformation from an effective 
Hamiltonian ~,0(@) to another ~'~'(q~): 

e-:~'(e~)=-~/" f ~I dq~y I~ (~ ((P'Y, -~-l/2L-(d+2)/2 2 ~oy).e ~ ' ~  
v 3:1 E Z d y ~  B ( X l )  

(1.4) 

where ~o' is a block spin variable, xl ~ A1, and B(x~) is an L<block ( c A o )  
centered at Lxl. Here J /  is a suitable normalization factor (so that 
e -  x~'(0/= 1), and ~ is the ratio of wave function renormalization constants 

q~ 2 ~Py=--Z21/2(Cnq))x 
3 E Bn(x )  

~ - zn + 1/z, 

We usually denote the first effective Hamiltonian by ~ o  and the nth 
one by ~ " ,  but sometimes abbreviate J/t ~n as ~ ,  and ~,~,z+l as Jt ~'. Our 
aim is to investigate ~ n  in detail. In this paper, as in Ref. 16, we perform 
estimates that are uniform in the volume of the original lattice A 0. So in the 
following analysis, we assume Ao to be sufficiently large so that the block 
spin transformation considered can be performed. (E.g., if we are to per- 
form BST n times, we take N ~ N o + n .  ) 

1.2.  N o t a t i o n s  

We use mostly the same notations as in Ref. 16. We denote field con- 
figuration {~ox}x~ x (X is a subset of Z a) by q~. 

Z/o: four-dimensional torus ( c Z  4) with side L N, N > 0  

An: four-dimensional torus ( c Z  4) with side L N-n 
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We also denote the number of  sites in A. by A.. 

A: four-dimensional hypercube of side L u~ with N o = 8 

IA.I: the number of  A's in A. ( = L  4(u x0-~)) 

IXj, X e Z4: the metric on Z 4, defined as Ix[ = 52~= 1 Ix~l, for x e Z 4 (our 
definition is the same as in Ref. 13, but is twice that of Ref. 16) 

Ixl~, xeZ4: I x l ~ - m a x ,  Ix,I 
IX[, X is a paved set: the number of L 4N~ blocks d in X. 

Lf(X), X is a paved set: the length of the shortest tree connecting the cen- 
ters of A's building X 

~ ' :  the effective Hamiltonian after n BST 

d#a: normalized Gaussian measure with mean zero, covariance G 

G~;L2nO: massless Gaussian propagator with infrared regulator L2~ after n 
BSTs applied to Go- - - ( -A)  1 [see (2.13) of Ref. 16 and Appendix. Also 
see note added in proof.] 

d , ,  Q~, ~ :  the same as in Ref. 16 

We also use massive versions of these Gaussian propagators and kernels. 

G~",,I: massive Gaussian propagator obtained by applying BST n times to 

G(o L 2""~ - (d + L 2n/~n) 1 

Note that #,  refers to the expected mass on A~, not on Ao. 
~'~"~ Qt~"), and d -~") are defined in the same way. 

a ~  [ a ~  [ g 2 ~  -`#, , , ,  { g 2 ~ - ( # n )  q - ") 1 2{)('un)] ( 1 . 5 )  I~,,) t n ,r n ~"~ kSn lLs'La/ J L20 d 

I+ :  Bounds on I~ (and I~ ~'~, p~>~0); I 4 1 , 4 I +  (see Section2.1) 

Quantities without the superscript (#~) are massless ones. 
As for field configurations, we use: 

Y~(X): same as (4.1) of Ref. 16 

D~(~): same as (4.10) of Ref. 16 

~@(u")(/3 X) --~ {d(~P.)~l)nl x + qln: Dm(~-z](.u")On) ~ D, ~"  ~ 3V.~(X) } 

We abbreviate @(~") as ~(.~.) n,n 
We sometimes omit the subscript or superscript n when it is obvious 

from the context. 
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2. M A I N  R E S U L T S  

In this section we state our main results concerning the noncritical tra- 
jectory. Because the statements themselves are rather complicated, we first 
(Section 2.1) describe our general idea of treating the noncritical trajectory, 
then state inductive assumptions used to describe the trajectory, and finally 
state the theorems in terms of these inductive assumptions. 

2.1. General  F r a m e w o r k  of  the  Analysis  

There are two problems in treating the noncritical trajectory. 
The first one is typical of treatments of a critical (or nearly critical) 

theory: We do not know the exact value of the critical point #c. 
The second one is specific to the noncritical trajectory: The mass term 

is relevant, and will grow like L2"!! 
The first problem is solved by analyzing a noncritical trajectory in 

terms of the critical one, rather than analyzing the noncritical one directly. 
That is, we investigate the mutual difference between critical and noncritical 
trajectories very carefully. (17'~9~ Then, since the result of Gawqdzki and 
Kupiainen gives us sufficient information on the critical trajectory, we can 
obtain sufficient information on the noncritical one as well. 

The second problem is solved by performing perturbation expansion 
around massive Gaussians. (Recall that the result of Gaw~dzki and 
Kupiainen showed that critical theory = massless Gaussian + small correc- 
tion.) That is, at each step of the iteration, we perform the "mass renor- 
malization" (as well as the "wave function renormalization") to eliminate 
the mass term, and express the noncritical theory as massive Gaussian + 
small corrections, without mass term. It is the (mass) 2 of the Gaussian 
propagator that grows like L 2n, and we can perform the perturbation 
expansion for this "small correction." 

We perform the actual analysis by dividing n (number of iterations) 
into three regions (see Fig. 1): 

Region L" The "mass term" is quite small. Here we take the mutual dif- 
ference between critical and noncritical trajectory, expressing both as 
massless Gaussian + small corrections. 

Region II: The "mass" is not so small nor so large. Here we perform 
the perturbation around massive Gaussians by expressing the effective 
Hamiltonian as massive Gaussian + small correction. 

Region IIl: The mass is extraordinarily large. Here we do almost the 
same thing as in region II, but we have to take the "large mass" into 
account carefuly. 
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Fig. 1. A schematic view of a renormalization group trajectory and the regions I, II, and III. 

Throughout  the following analyis, we fix the initial value of 2 to a constant, 
and vary only the initial value of #. The initial value 20 is chosen suf- 
ficiently small so that the proof of Theorems 2.1 and 2.2 can be carried out 
(so that the bound B10 holds for 2o for no of Section 2.2). 

2.2. Induct ive Assumptions and Bounds 

Here we list inductive assumptions and bounds used to describe the 
effective Hamiltonians. There inductive assumptions and bounds are rather 
complicated, so the bored reader can first skip to Section 2.3. 

First we list our choice of various constants. The explicit values should 
not be taken seriously, because they are far from optimal. 

Choice of Constants. 0 < e --- c~(L): sufficiently small: fi -= 6c~; L ~>/7= 
513: odd integer; I - t 0  -2 , I + = � 8 9  C + = I 7 1 ;  C = (2 I+ ) -~ ;  
No/> -go(L): large; Co >/Co(L); C2 7> (~2(L, No); C~ >~ CI(L, No, C2); and 
Bo ~>fio(L, No, Co, C~, C2), with Co, C1, C2, and ~o sufficiently large as in 
Ref. 16, e.g., 

rio ~ exp(L s ) (2.1) 

Now the effective Hamiltonians of critical theory and of noncritical 
theory (in region I) are expressed as follows. 



Logari thmic Correct ions in 4D (p4 Spin Systems. I 63 

An. General Properties of the Effective Hamiltonian 

e x p [ - ~ ~  e x p [ -  �89 1 n = Gn r )] exp[ - -  V~(~'")]I.~,,=~... 

exp[ - -  V~(~n)] = exp[ - V~(~ ' ) ]  e x p [ -  V~4(~n)] 

V~(~) and e x p [ - V "  t~-~1 ~>4t j j  are analytic in ~ on ~,(D, L-~A). 

A1 

V~(tt~ n) = f dcv (~In )'n~ ~(;L2n~)(1[l n ~2 
t . . . . . . . . . .  

+ Y, d~ d~ . . . .  , ,  . , - x - o , , , b ~ . ) ( a , , O ~ . )  
]x,v 

A2. The term exp( -V~4  ) is analytic on ~,,(D, L hA) and has the 
representation 

e x p [ -  >4(W )] = ~ g s  (W)  exp[ V~xDI(W')] 
{x~} 

Here Y~{x,} runs over the collections of paved sets such that X~c~Xj=~25 
( iCj ) ,  De(L)X~),  each Dc~Xe is a nonempty union of connected com- 
ponents of D. 

A2a. The term g~?~ depends only on W~lx, even in q)', analytic on 
@,(D, X), and satisfies the bounds to be specific later. 

A2b. The term V~Xb ) depends only on W"l~o, is analytic on 
3~ , (L  "A\D), and has a representation 

v~'>('~")-L' I d~ (O~)4 + Y. P4~(,F")+ ~ v>_6~(v ~) 
~D ---'~, ~D y c  ~UXi y c  ~UXi 

where P4y(~W) is the restriction to the diagonal of a quartic nonsymmetric 
f o r m  g 4 g ( ~ l ,  ~tP2, 1~3, KIJ~). Here - n n n n n V4y(ltIJ1, W2, W~, Wg) depends only on 
~l r, and ~g enters P'4y(~7, ~ ,  ~P~, WX) only through its differences at 
each pair of points, and 

V>~6Y(It~n) = /~2 fA dzf~ dy n 3 n 3 - - -  (Qn)x~(~) (0~,) -}- V~>6Y(~n) 
72(~i,j2) 1 2 

Here, P>6r(~  ~) depends only on ~1 y, is analytic on 3~(Y) ,  and has the 
Taylor series starting with sixth term. As in Ref. 16, ~'(a~,a2)means that the 
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term appears only when A~ u z~ 2 ~-- Y. (Otherwise, it should be regarded as 
zero. ) 

assumptions are as Inductive bounds to be used with the above 
follows. 

B~. Inductive Bounds (on Critical Theories) 

B1 

B2 

B3. 

B4. 

B5 

C _  C +  

no + n no + n 

I~nl ~ (no + n) 3/2 

fa dr fj dy .)ff ~ , l  . la~- yl2/3 <~ (no + n) 3 / 2 e N p [ - ~ S ( A I u A 2 ) ]  
1 2 

On ~.(D, X), 

]g~D(~IIn) ~ exp [ C21D ~ X[ - ( )~./24 ) 1/2 f D~X d~ ~1~ 2 

+ X~ !o~xdCc (Im O~.)4-~S(x) 1 

On 3X,,(Y), 

[P4y(lt~n)l  <~(no+n) 3 / 4 e x p [ - ~ S ( Y ) ]  

I V>~6v(~n)l ~ (no + n) 2/3 e x p [ - a S ( Y ) ]  

I~n_~- 11 ~ ( n o + n )  3/2 

C~. Inductive Bounds (on the Mutual Difference in Region I) 
Here mutual differences of various quantities of critical and noncritical 

theories are bounded. 2n stands for (2~)critioa~. 

C1 
1(2~)nc--(2,)cl <~(no+n) ~/32~lA~nl 

fA dx I d~ ]',$G--~[2/3](f~n';:y)nc--(~{~n,Vy)e[ 
1 aA2 

~< IA#~] (no + n)-2/3 exp[ -~L~(A 1 w A 2)] 

where A#, = (#n)nc- (#,)c- 
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C2. On _~(D, X), 

- (g~gD)c[ <<. ]A/~.l (no + n) ~/2 exp [C2 ]D m X] - (2./24) 1/2 a~ < x I~'~1~ 

+ 2, fD~,xd~ (Im ~bT,)4-aZ(x) ] 

C3. The difference of V4v can be written as 

with bounds on A~4~ and AV>6~ on 3 ~ ( Y ) :  

I~l ~4 ~(V")l ~< IA#,,I (no + n)-  ~/3 exp[ - ~L( Y)] 

IA V>~6y(V")] ~< I~/~,,I ex p [ -~L~(Y) ]  

C4 

I(g~-a)nc-(~',,-*)cl <.(no+n) 7/91A/~,,] 

The second set of assumptions and bounds describes noncritical 
theories not close to the critical one. 

D~. General Properties of Effective Hamiltonians (in Region II) 
We have 

e x p [ - ~ ( ( " ( ~ " ) ]  = e x p [ -  ~ ~ /,v~) 

and e x p [ -  r ( ~ " ) ]  is analytic on ~*~o)(D, L "A) and can be written as 

e x p [ -  W ( ~ " ) ]  = e x p [ -  V~(~")] exp[- -  V~4(R'")] 

D1 

4 . . . . . . . .  

D2. Same as A2, except that we use ~a.) ,  ag~,,), and Q~a.) instead of ~n, 
ar and Q n- 

822/47/1-2-5 
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E n �9 

E1 

E2 

Inductive Bounds (in Region II) 

Hara 

_ _  2C+ C /2 <2.~< fi>~(no+n) 
no + n no + n' 

I d:v fa dY[3U~'~[ '(x-y)2/3 ~< (no+n) 3/2 exp[--~oL~(dl wA2)] 
1 2 

E3. On ~ " ) ( D ,  L-hA), 

/)o, \1/2 
[g~;D(V')]~<exp C2]D~X[-~2-4) JD~xd~ 6~:.12 

E4. On 3Yt.(Y), 

E5 

] V4r(~')] <~ (no + n) 3/4 e x p E - ~ S (  Y)] 

[ff'>6v(~')] <~(no+n) 2/3exp[-~c~(Y)] 

]~._1_ i[ ~<(no+n) 3/2 

F.. General Properties of Effective Hamiltonians (in Region III) 
v~(~~ YF,,,~ instead of ~ , , t ,  K;,. Same as D., except that we use ---,-i' 

G.. Inductive Bounds (in Region III) 
, ~(~,,) y{;,i instead of no + n, Same as E.,, except that we use no+nl, --,,,~, 

~(~./ ~ .  That is 
n 

G1 

, 3 C +  _ " "~ C /3 < ~ 2 . < ~ - -  fi.>~#.i 
- - - - - - - - 7  no+n1 no+n] 

G2 

f dxla dy X € "]~-yl2/3<~(no+n't) 3/2exp[-ctS(A,wd2)] 
1 2 rt x ~  
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G3. On ~ ) ~ D  L ~A), 

Ig~?O(~P")l ~<exp C2IDmX l -  ~ ~xdxl~p~ 2 

+ 2~ fz) ~x dzv (Im ~:)4-cx~'a(X)] 

G4. On 3 ~ i  (Y), 

l~'4v(W")/<~(no+n'1) 3/4exp[--TSF(Y)]  

I P>~6Y(~")I ~< (no + n'~) -2/3 exp[  - ~ S e (  Y)] 

G5 

~n 1-- 1 <~(no+n'l)-3/2(2/L) (" "i )/2 

R. Recursion Relations 

We also list the recurs~on relations of 2. ,  # . ,  etc. 
R1 

2 .+~-2 , ,=2~(-~I~+6) / ) ,  IOR'l<~(no+n)-~/9 

R2 

#n+J = L2#,, + 6# l, 16#11 ~< (no+n)  -13/8 

RD. Recursion for Mutual Difference (Region I) 

A#,, +, = 3#,,L2(1 - �89 + �89 ~) 

10#21 ~< (no + n) -*~ + (no + n) -'/613#l 2/3 

Here 2,, stands for (2,,),. 

RM. Recursion for Noncritical Theory (Region II) 

/7,+1 = L2/~,, + S# 3, ]6#3l <~(no+n) -13/8 

) ~ , + 1 - - 2 , = 2 2 (  - 3I(~")J-'~3~2 , -'-'.~ l, 16~,31 ~ ( n o - { - n )  -1/9 

RN. Recursion for Noncritical Theory (Region III) 

fin+l =LZ/Tn+6# 5, ]6# s ] <~(no+n)-13/8(2/L)( ..... i) 

2 = + 1 = 2 , + 3 2 5  , ]c525f<<(no+n ) ~5/8(2/L)(, ,i) 

67 
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2.3. M a i n  Results 

Now we can state our main theorems. As was stated at the end of Sec- 
tion 2.1, we fix the initial value of 2 to a constant throughout the following 
analysis, and vary only the initial values of kt. The initial value of 2 is 
chosen sufficiently small that the proof of Theorem 2.1 and Proposition 3.! 
can be carried out. (Of course there exists such 2 > 0. See Section 3.) 

First let us recall the result of Gaw~dzki and Kupiainen, which charac- 
terizes the behavior of critical theories: 

T h e o r e m  2.1 (Gaw~dzki and Kupiainen(16)). Consider a theory on 
Ao, and fix the initial value of 2 sufficiently small. Then there exists (at 
least one) critical value #c(2; Ao), and if we start BST from the initial value 
(/l c, )~) then e ~"  (n <<. N - N o ,  A o -  L 4N) satisfies the above assumptions 
An together with the above bounds B n. 

FCemork. For finite A0, #c(2; Ao) is not unique, but exists in some 
domain of R. For  the infinite-volume limit, see Theorem 2.5. 

For noncritical theories, which are of particular concern in this paper, 
the following is proven. 

T h e o r e m  2.2 (Trajectory of noncritical theories). Consider a 
theory on A0, fix 2 sufficiently small as in Theorem 2.1, and consider a 
noncritical trajectory of ~ "  starting from (/z, 2). Denote t = # -  #c()~, A0). 
Then for n ~< N - N o  we have the following results. 

Case a. 0<t~<(no)  1. 
There exists nx ~> 1 specified by (2.2). 

(i) RegionI. For  n<<.nl, e ~~ satisfies the assumptions AN, and the 
difference between this noncritical theory and the critical one satisfies the 
bounds Cn. Here nl is defined as the minimum positive integer such that 

A # n l _ l < ~ ( n o + n _ l )  1, A # , ~ > ( n o + n l ) - I  (2.2) 

Moreover, for O <~ k, n + k <<. nl , 

(L2/2)k << Art, + k/A #,, <<. (2L 2)k (2.3) 

(ii) Region II. For nl + 1 ~< n ~< nl + 9(no + nl) ( = n'l), e ~" satisfies 
the assumptions Dn together with the bounds En. 

(iii) Region III. For n'~<~n, e ~"  satisfies the assumptions Fn 
together with the bounds G,. 

Case b. t > (no)-l .  
In this case, the trajectory starts from (ii) or (iii). 
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C a s e  c. - ( n o ) - 1  <~ t < O. 

As long as n ~<nl, the trajectory is specified by (i). 

The proof  is presented in Sections 3-5. 

Remarks. 

1. We present a schematic view to the trajectory in Fig. 2. Note that 
~ n  stays in the vicinity of the Gaussian fixed point (i.e., in region I) for 
arbitrarily long time as t --* __+0. (See also Theorem 2.3.) In other words, the 
behavior of ~ "  in region I will play an essential role in the study of critical 
phenomena (even in the low-temperature phase!). 

2. If one is interested only in the trajectory with t > 0, it is possible to 
analyze it in a somewhat simpler way. That is, one can combine the 
method used in region 1 and that used in region II, and analyze the trajec- 
tory in regions I and II in a unified manner. But such a method cannot be 
used to analyze the trajectory for t < 0. For  this reason, we perform the 
analysis in three steps. 

3. The trajectory of a hierarchical model in region I I I  was 
invesffgated by Ito. ~2~ 

4. The BST in a uniform magnetic field is exactly the same as that 
without one, except that the magnetic field itself grows like L 3n. (How to 
extract physical information is a distinct problem. ~21)) 

Fig. 2. A magnified view of the renormalization group trajectories around the Gaussian fixed 
point. The dots indicate ~n at every 108, say, iterations. It can be seen that ~n stays in the 
vicinity of the Gaussian fixed point (in region I) for arbitrary long time as t --, +0. 
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5. Investigation of the trajectory in the low-temperature phase (out- 
side region I) is quite an interesting open problem. 

We can also prove more refined bounds on the behavior of #,  and )~,. 

2.3 (Refined Bounds on Trajectory): 

Itl <(n0) -1, nl [defined in Theorem2.2 and Eq. (2.2)] 

where 

I ln l t l l - ln  no < nl ~< lln Itl I - l n  no 
2 1 n L + l  2 1 n L - 1  F-1 (2.4) 

(ii) When Itl <~ nol L 7~ 35 and 33 <~ n <~ nl + l, Al~,, satisfies 

tL2nn l/3Rl(L, No, no) l<~Al~,<~tL2%-l/3Rl(L, No, no) (2.5) 

RI(L, No, no) =-- C(L, No)(no) c'(L'N~ 

with C and C' finite positive constants depending only on L and No. 

(iii) When 0 < t < (no)-1, ft, of assumptions D,, satisfies, for 

9 ( Ilnltll - l n  no ~ 
0 ~ m ~ < ~  no-~ 5~nL-+-l- ] 

the condition 

1 IL 2nl + 2 m  tL2nt + 2m 

-~ RI(L, no)-1 - -  (2.6) (nl)1/3 <~,~+m<~2R1(L, no) (nl)i/3 

The proof is presented in Section 6. 

As a corollary, we can prove the following, which will play an essential 
role in extracting the logarithmic corrections in Part II, 

Corollary 2.4 (To Be Used in Part II). Given M(L, No, no)> !, 
consider the noncritical trajectory for 0 < t < (no) 1. Define n2/> 0 (if it 
exists) as the smallest integer such that fin~+,:>~ M. As long as 

- l n  t >~ (2 + 1/ln L) ln(2M) - 2n o In L 

then n2 exists, and 

M <<. fi,, + n2 <~ 2L2M (2.7) 
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Moreover, n~ + n 2 and M are related by 

M tL 2"~ + 2,2 
<~ <~ 2L2MR1 (2.8) 

2R1 (nl) 1/3 

So far, we have been considering a theory and BST on Ao. Let us now 
consider the infinite-volume limit (A o -~ Z 4) of ~t~(2; Ao). We have 

T h e o r e m  2.5. Consider a sequence of/~,(2; Ao) of Theorem 2.1 for 
fixed 2. As we let Ao --* Z 4, (the existing domain of) #~(2; Ao) converges to a 
point in R We denote this point by/~c(2): 

l i r a  #c(2; Ao) =/~c(2) 
A o ~ Z  

(2.9) 

The proof is presented in Section 7. 

Remark. As mentioned, for finite A o,/~c(A0) is not unique, but exists 
in some range of R. The above proposition tells us that the existing domain 
of ~q(Ao) shrinks to a unique point of R as A o ~ Z 4. 

3. T R A J E C T O R Y  IN R E G I O N  I 

Here we fix the initial value of 2 suficiently small (as in Theorems 2.1 
and 2.2) and vary only/~. We consider the case Itj ~< (no) -~. 

Theorem 2.2(i) is proven by the following inductive proposition. 

P r o p o s i t i o n  3.1. Suppose ( ~ ) c  satisfies An and Bn, (Jf),c. satisfies 
A, ,  and the difference satisfies C,. Then as long as IA/~ t ~< (no+n) -~, 
(x/g'),, satisfies An+ 1 and C,+1 together with the recursion R l , . n + ~  and 
R D , . n +  i. 

Proof of Theorem 2.2(0 Assuming Proposition 3.1. Because 
Proposition 3.1 itself iterates, we have only to show the existence of n~ and 
the rough bound (2.3). But these can be easily derived from RD as follows: 
As 12,~I,-6#2J is extremely small, RD immediately yields 

L2/2 <~ A#, + ~/A#, <~ 2L 2 

This means that (L>~500) IAt~I is monotone increasing in n, while 
(n o + n) -1 is monotone decreasing. Thus, nl, specified by (2.2), exists and 
the bound (2.3) holds. II 
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3.1. Proof  of Proposit ion 3.1 

Because Proposition 3.1 is a natural extension of the result of 
Gawqdzki and Kupiainen, we only present a rough sketch here. The 
(n+ 1)th effective Hamiltonian is given by [Ref. 16, (2.38), (2.39); also see 
note added in proof]. 

exp [ -  Yf'(q~')] = e x p [ -  �89 -~ ' G,+ ~q) )] exp[ - V'(~')]L,v,= ,~,,,, 

exp[-V'(*')]=exp[�89 (t~, @I,~ )2 ] 

x f d#~(Z) {exp[-V(L ~'/a~' + ~)]}/(~'=O) (3.1) 

Now the basic idea is quite simple: Take the difference of everything! 
That is, we write down expressions for various quantities for both critical 
and noncritical theories after Ref. 16, and estimate their differences. How to 
proceed will be almost clear from the form of inductive bounds C. 

For example, to take the difference of (W~).c and (W~)~,, we write 
each of them as [compare Eq. (7.4) of Ref. 16] 

(wS)nc- (wS)~. 

- <(vL~)c; (vL~)c; (vL~)c>,.~ } 

+ O0{exp[-~(no + n) '/a] },~.- Oo{exp[-e(no + n) lf23 }c 

and estimate each term using the bounds B for critical theories and C for 
differences. 

Other quantities are treated in a similar way, using various inter- 
polation formulas to connect the critical theory (s = 0) to the noncritical 
one (s = 1). We mate two remarks. 

Remark I (Concerning the critical trajectory). The method of 
Ref. 16 does not yield the desired bound on 9"6. We have to treat V6 as was 
done for #'4Y in Ref. 16. That is, we separate W~>6y into W>~6y and W6r, 

4 2  fA fA L2~- , 3 t 3 W,6y(T,)= z. ~ dx d~( J/ L.J3)L~L~.(O~) (0~.) 
72(~,d2,~3) 1 2 
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and define 

and 

2 

~ l A f A f  A 207- , 3 , 3 
"" (a , 2) t 2 

~.n>>+61( ~[p ) c =__ ~vt l 6 y ( ~ l / 2 ~[i, ) q_ j/~2y(~l/2~r/t) 

+)~'+' F f, d~vfj d~(Qn+,) ('//)3(0'13 

Then this P" + 1 satisfies the desired bound B4. - -~>6Y 

Remark 2. To take the difference of g~x + I,D,, it is more convenient to 
use the following fi, ~, instead of p, ~ of Ref. 16: 

,~:;-p~ ~ [ W~(0) + W ~ ( , ' ) ] }  
AcX'c~D' 

~D'____-- Z Z 2 H f i ~ l ~ I  {exp[W'r , (~  w~v~] - 1  } 
{X(} { V a } , V : > A  {Y,8} Y 

x [ I  [exp(ff/;r,j + W;v, ,)-  1] 
/3 

xexp - 2 W ; 4 A + ~  (~,,)4 
JcX~D" �9 O' 

F, 1 
i A < Y = ~ ;  ) 

We thus make full use of expected cancellations between large-field 
contributions, and take the difference efficiently. 

4. T R A J E C T O R Y  IN R E G I O N  I I  

Here we investigate the noncritical trajectory not too close to the 
critical one. 

In Section 3 [or Theorem 2.20)], we have done the iteration until A#n 
grows to (no + n)- l .  Because I(~n)cl ~< (no + n)-3/2 this means (originally 

(/G),~>~(no+n) 1-(no+n)-3/2>~(9/lO)(no+n) 1 (4.1) 

This is sufficiently massive for us to perform the iteration without referring 
to the critical theory. In this section, we will consider the noncritical theory 
only, so we will omit the subscript nc in the following. 

First, we consider the effective Hamiltonian at n =/71 + I. 
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L e m m a  4.1. Consider the BST fore n~ to n l + t .  The o;/{~n,+~ 
satisfies D,~+~ and E,~+I, except for El ,  with the following recursion 
relations: 

/~' -= L2/t q- (~r 4, {6kt41 ~< (no-F n) -3/2 
(4.2) 

R1 for 2 ~ 2 '  

Proof of Theorem 2.2(ii) for n = n t  + 1, assuming Lemma 4.1. 
This is almost obvious. We omit the details. I 

Now for n >/n~ + 2, we use the folowing inductive proposition. 

P r o p o s i t i o n  4.2. Suppose Wn satisfies D,, and En. Then ~ n + l  
satisfies Dn+l and E , + I ,  except for Eln+l .  Here the recursion RM . . . .  + 
also holds. 

Proof of Theorem 2.2(ii), Assuming Proposition 4.2. First note 
that the proposition itself iterates only if we can prove, in addition, the 
bounds Eln+ ~. 

Case a. The bound on ft ,+l- 
We use the recursion relation RM for/~ with the bound on fin, I/~,l >~ 

(no + n)-~, yielding 

fL,+l>~L2(no+n) -1-(no+n)-13/8>~(no+n+ 1) -~ 

Case b. The bound on 2 n+t. 
We write n=n 1 +rn. First note that a s / 2> 0 ,  I(~)<~I+. 
The recursion relation RM, 2t~2~+~ for nt ~t<~n~ +n, is 

2' = 211 - 2(3/~")/2 - 623)] 

Now take the inverse of both sides using 1 + x  ~ ( 1 -  x ) - ~ <  1 + 2 [xl (for 
[xt ~< 1/2), and take the summation over l: 

n! +J 'n 

(Zn,+,,+,)-~-(Z,,,)-t~ < ~ ]3I~')+2523t 
t = n l  

n l + m  

t = n  I 

Estimating the summation by the bounds on It and 623, we obtain 

2. + i = 2n~ + ~ + 1 ~< [(2n~)-I _ 2(no + nl )s/9] -1 

C+ 
~< (4.3) 

no + nl - 2C+ (no + n l )  8/9 
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This yields the desired upper bound as long as, e.g., m<~ (9/lO)(no+nl). 
The lower bound can be obtained in a similar (in fact easier) way. | 

Lemma 4.1 is proven in Sections 4.1~4.4. For this, we assume that the 
reader is familiar with the method of Gawr and Kupiainen. We first 
assume O<Ft '<LS(no+n)  i and then check that we can in fact choose 
such fi'. 

Proposition 4.2 can be proven in the same way as Lemma 4.1, so we 
will omit its proof. 

4.1. Expression of the  Ef fect ive  Hami l ton ian  

Let us first recall the formulation of Gaw~dzki and Kupiainen, which 
we used in Section 3. We have the relation [(2.30) of Ref. 16] 

dt~co( @n) = d~_~c,+ ~( cbn + 1) x d~ l ( Z ~) (4.4) 

This, combined with the expression of the nth effective Hamiltonian 

dqb~.e-.X~,,(| = dllc,,(@n).e- w,(,v,,)] ~, =-~o*~ (4.5) 

led us to the formula (3.1). In (3.1) the (n+  1)th effective potential was 
given by V~+I(W~+I), Wn+l=dn+ld~"+~ (see note added). 

On the other hand, here we want to obtain the (n + 1)th potential as 
V~+I(~"+~), but ~"+l=sJ~+)lq~'+~.  Moreover, we want to express the 
Gaussian part in terms of G~+) 1 rather than G,+I ,  and in addition, 
e x p ( - ~  ~+ ~) must be analytic on ~(~')(D, L - ' A ) .  

For this purpose, we use the relation of Appendix B, Proposition B.2. 
Here it reads 

(r (G.+~)- 'e  ~+~) 

= (0 -+I, (G(~1)- ,0 .+, )  

(&I), r  ~)-/Y f da~ (o-)2r~,,= ~,~,. , ,  (4.6) 

and the kernel &I satisfies 

f (&I)x.~.l ~< const �9 exp[ - fl jx - y] ] (4.6') 

Substituting this into Gn+1 of (4.4), we obtain 

d~Gn(On) = d~G~,(~l}n+ 1) X M ~ I ( Z  n) x e -'~e (4.7) 

' ~ ~G(P') ) - , r  d E = : (  , - - 1 ) ( ~  " + ' , ,  ,,+1 

--  1~ / ~ , 2 ( ( ~ n + l  (61), ch"+l)--• fi' f 2 n 2 n d.~ (I/t'a_)2t~p-,=x~c(/?').t,+l 

(4.7') 
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Equations (4,7) and (4.5) give (see note added) 

&b~+ x exp[ - ~ " " +  ~ ( ~ +  ~)] 

= d#a,&(~ "+ ~) e x p ( -  6E) 

x j d#~(Z) { e x p [ -  V"(W" = ~];;2L-~W'* + ~+ ~.,)3 ) 

We still have to rewrite 

in V" in favor of 

~ +  ' =.~.~.+ t~'~+ ~ 

(4.8) 

e x p [ -  V ~+ ~(W')] -= e x p [ -  8E(W')] 

x e x p [ -  W"(~l /2W')] /exp[-  W"(0)] 

define 

e x p [ -  W"(W')] -~ f d~q(Z) e x p [ -  V"(L- '  {W'+ ,@W' } + ~ ) ]  (4.12) 

(4.13) 

Recall that e x p [ - H ( ~ ) ]  had a physical maning only when �9 = ,~qJ. (We 
extended �9 to be complex in order to perform BST.) Taking this into 
account, we define ~ .+1  as a function of ~ ' :  

(4.9) 

where [N] denotes the closest integer to ~. Then we can rewrite (4.8) as 

d~,, ~ 1 e x p [ _  ~ .  + l(qj. + i)] 

_ _  n +  1 - d#as,?, ( ~  ) exp( - bE) 

x [ d~1(Z) ( e x p [ -  V~(~" = ~'/' --' ~.,-L { ~ ' + ~ ' } + ~ ) 3 )  
d 

x ( ~ '  = 0 ) - ~ f , v , =  ~ . . . + ~  ( 4 . 1 0 )  
�9 n +  i 

Now, as in Section 11 of Ref. 16, we extend 8E (until now defined only for 
= d ~ )  to a suitable analytic function of ~ ' ,  and for 

�9 ' ~ ~(~')(D, L -  ('~ + l)A ) (4. t 1 ) 



Logarithmic Corrections in 4D ~p4 Spin Systems. I 77 

Then, formally, e x p [ - p + l ( ~ , ) ]  is analytic on (4.11) and satisfies all the 
desired properties. 

This is the desired expression of exp(-Yf"+~).  Now we have to 
estimate e x p [ - W " ( ~ ' ) ] ,  rewrite bE, and turn them into the form of 
assumption D,, + ~. 

4.2. D e c o u p l i n g  Expansion 

To estimate (4.12), we perform a decoupling expansion similar to that 
of Gaw~dzki and Kupiainen (Ref. 16, Section 5). 

1. Localize the regions where ~ is large. 

2. Mayer-expand V2y and ~'>4Y. 

3. Decouple the nonlocality caused by the kernel Jg, relate ~ and Z. 

3'. But here is one more source of nonlocality: ~ = sff -sr  To 
decouple this, we introduce the parameter t (as well as s) and define [cf. 
Ref. 16, (5.12)] 2 

and use similar interpolation formulas. 
It, As a result, we have [cf. Ref. 16, (5.23)] 

e x p [ -  W"(~')  ] 

=• ~ 2 ~ Z f[IST(<)l-lgx,nDtVs'~' , 
p {x,} {v~} {v~) {%)' ,/ i 

• [ -  f d.~ (�89 '.~r ](,Itst]2 -~ ~, ,~ '~ , -Z Z v~(vs') 
i Y c  X i 

s t  4 ~..f~D d~ ~ )  --1-I~ [exp(--P2y~)-- l ]  

x 1-1 [ e x p ( -  V~>4YCr 1] )~fi(l~) d]~l(l~) 
/3 

~s, = L -I(W, + ~ , ~ , )  + ~ ,  

Here {q/s} is a partition of {Uk}, and 

ST(dll) = ~ f dtr, dsr, a,r, ~,r, 
F~. l't 

z This t should not be confused with the temperature, t-= kt-/~c- 
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where the summation over F~ and F s runs over all t- and s-graphs such 
that F t u F s connects all Uk ~ ~//. 

4. Separating the contribution from Y=A,  and turning this into a 
system of disjoint polymers, we have 

exp[-W"(~')]= ~ l~p~i(~')exp[- ~ W~(~')I 

W~(~')  -- [(5.26) of Ref. 16, with ~o _= L - I ( ~ ,  + 9 o ~ , )  + g o ]  

x e x p [  fc d~c(�89 ~2~ ,t,l, st,2 - - ~  .... , , ~ , - 2  Z P2y(v") 
X' i Y ~  Xi  

s t  4 2!fLx, dz 0~:) ] I~I  [exp( -V2y, )  - 1 ]  

x [ I  [ e x p ( -  ~'>~4Yl~ ) - -  1] 
3 

xx~(Zcx,)d#l(Zrx,)exp[~=;\D, W~(")]  

(The summations are almost the same as (5.25) of Ref. 16, except that LX' 
is connected by a graph made of s- and t-lines.) 

This is the desired decoupling expansion. 

4.3. Evaluation of VI/~ and Polymer Activit ies 

First let us evaluate W~. This is done in almost the same way as in the 
case of W[~ (Ref. 16, Section 7). The only difference is the appearance of 9 ~ 
in the definition of Wo. But since we are expecting 17'1 <<,LS(no+n) -1, 
I~~ ~O(1)(no+n) -1, and the contribution from 9 ~ is quite small. The 
result is 

W~(W') = [ W[a(~') of (7.22) of Ref. 163 

fA f3 ~o  ~b' fib' )3 + l  d ~  d ~  ~, . . . . .  , , .  
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Now let us turn to the evaluation of Px. In this case, the contribution 
from 9 '  is also small, and is treated by the Cauchy estimates. We allow 
complex values for t, 

[tkk, I ~ (n o + n) 9/10 exp[fl/2 d(Uk, Uk,)] 

Now, since we are expecting Ifi'[ ~< LS(no + n) ~, 

udstE~(LD'w R~, Uk) for W' e�89162 

We can thus use the induction bounds for .Yf", and proceed as in Section 8 
and 10 of Ref. 16. Because we have allowed such large values for t, the 
Cauchy estimates show that the difference caused by the appearance of t is 
quite small. The result is 

P~x = [P~x of (8.24), Ref. 16] 

f A ; d ~' 111'(|]11)3 
( ,di ,A2) 1 2 

'J-I')'"L2 S fAI dx fd2@(L2~LA3)L.;'L,@tJ:(@; )3 
(Abd2, d3) 

I#~;('P')I ~<exp (L4q  - 1) C21D'aX' [ - -~-  -~ dz 1r 
'c~X' 

q-/~nfD, c~xd~c(Imt/l;~.)4--So:~(x)] 

for ~ ' e  (L/8) ~(")(D',  X'). 

4.4. Determinat ion of A', 13', and the Large-Field Bound 

First let us determine 2'. We proceed as in Section 9 of Ref. 16. The 
explicit difference between our case and that of Gawgdzki and Kupiainen 
resides in only the following two terms: 

But, because 

( d l , d 2 )  1 2 

-}l'~L2 Z fd 4;y2 fA d~ (L2~Lzi3)L~,L, ~ ; : ( O ~ )  3 

(dl,d2,33) l 2 

= Y 
2 2 y~d2 
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the first term can be rewritten as 

~ i t 3 

(31,zJ2) 

This is exactly of the form of V4 (the fourth variable enters as "difference") 
and thus has no influence on 2'. 

The second term can be treated similarly; because 

de (JL~2)L~,L~ = 0 
l 

we can write it as 

L 2 ~  i t 3 ~-l~#t2 ~ fzll dx fA2 d~ct( ~Ld3)L~L~ffJz[(ffly) - -  (1~:~) 3 ]  
(Al,z/2,d3) 

This is again of the form of 1~ 4. We thus have the same recursion relation 
for 2' as that  of the massless case. 

Next, let us turn to terms quadrat ic  in ~g'. They are of the same form 
as the massless ones, and can be treated as in Section 11 of Ref. 16: 

4 v 

In addition, here we have the 6E term. By the result of Appendix B, 

= - (~Ox) - ~ P  dx (~ , )2  

lff ~t2(lfhn + 1 (I)n + 1 - ~ y  ~ , 6L ) 

As in Section 11 of Ref. 16, we can extend 

to ~g' e~(;~')(D,L ("+I)A) as 

f dx [�88 --1 ( ~  (n~) 1 )x~ -- l~n((ffn +1 ) ~  3 (if/ix)2t ~ ' =  d ~ ? , *  n+I 

1 n + l  (IDn + 1 - ~(d) c5I, ) + ~ - '  W2 y 
Y 

+ irrelevant terms 
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and we obta in  

(quadra t ic  in ~ '  in V ~ + 1) 

= ( d a :  , 2 1~ 2 
J 

f 
dx  , 2 1~- 1 ~ ' +J (~'~) [~( - + 5c)] + irrelevant terms 

I&l ~< O(1)(no+rt) -7/4, [(Sltl ~ O(l)(RO+n) -7/4 

We choose 

and get 

with 

and 

1-~=~. f i c ,  [.L2t~=fi'-~,'5,u 

(quadra t ic  in ~ '  in V ~ + l) 

= -- �88 f dz~ ~s-~.Jt'r ~2tN(a,)~ . + ~ . ~  + irrelevant terms 

I ~ -  11 <~ (no + n) -3/2 

/~' --  ~ (L2p  4- ~/~) = L2/2 + 01~ 4, 15/~4i ~ (n o -t- n ) -3 /2  

81 

N o w  that  we have fixed ,U and fi', we can proceed to the large-field bound.  
Since this can be treated in exactly the same way as in Section 10 of Ref. 16, 
we omi t  the details. 

5. TRAJECTORY IN REGION III 

Here  we investigate a noncri t ical  t ra jectory far f rom the critical one. 
We will be ra ther  sketchy, because this is an easy exercise of  the methods  
a l ready presented. 

We use the following inductive proposi t ion.  

Propos i t ion  5.1.  Suppose  ~ n  satisfies /7,, and G. .  Then  ,X~ "+1 
satisfies F n + 1 and  G.  + 1, except for G1 n + i. Here  the recursion RN~ ~ .  + 1 
also holds. 

Proof of Theorem 2.2(iii), Assuming Proposition 5. 1. As in Sec- 
tion 4, the propos i t ion  itself i terates only if we can prove,  in addit ion,  the 
bounds  G l n +  1. 

822/47/1-2-6 
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By RN and GI for ~ (n'l =-nl + 9 ( n o +  nl)), 

i 1 2 / '  l [ 2 ~ n  -- n I ~ / ~ n + 1 ~ L Z / ~ n + 6 # 5 ~  ~ t ~  ,' JAn i 

Moreover, 

12,+1-2~i1= ~ 62k ~<2(no+n)) 3/2 
k =  i 

Combining this with the bound E1 on 2nl, we can get the desired 
bound. | 

Proof of Proposition 5. I. First note that Assumptions F and G are 
almost the same as D and E. Thus, along the same line of argument as that 
of Section 4, we can easily prove Proposition 5.1, but with the recursion 
RN replaced by RM. Our remaining task is therefore to improve the recur- 
sion RM into RN. This is easily done by the following arguments. 

1. Estimation of W~. Contributions to ~,2 and ~,4 from W~ except 
for 

E+, 1 - d:c I ,~ t4  ~ t j .  ~ I ~ '  2 

contain at least one ~e ~ contraction, and are of order (see 
Proposition A.3) 

I j ~ )  I ~ ~ 1  ~ (2/L) 2C . . . .  i) 

2. Estimation of Px,. First change the definition of Z~ as 

X~ - ~I Z[P,(no + n'l )1/4(L/2)t ...... i)/'2 <~ Z ,  
u 

<~ (p, + 1)(no + n'~)l/4(L/2) (n ,,i)/2] 

Then terms with /5 va 0 become of the order 

exp I - ( n o  + n',)l/2(L/2)(n-n~) ~ p21 

On the other hand, because ~ '~)-< O(/~ 1 /2)exp( - f iLx-u[ )  and we xU 

expect 

]6p51 <~ (no + n'l) 3/2(2/L)(" ~i~/z 
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we can still allow s, t to take such large values as 

Is~k,[ <<, (L/2) ~n ni)/Z2r exp[l f ld(Uk,  Uk,)] 

[tkk'P ~< (L/2) ~n "i)/2(no + n'1)3/2 exp[�89 Uk,)] 

Then each s- and t-derivative provides us extra (2/L)/n nl)/2 factors com- 
pared with the result of Section 4. 

Terms (contributing to ~k'; or r without s- or t-derivatives are 
evaluated explicitly, and are also shown to have extra factors (2/L) ("-nl)/2. 

3. Summary. As a result, for terms in W'~ contributing to 0,2 or 0,4, 
we have at least one extra (2/L) (" ~i)/2 factor compared with those of Sec- 
tion 4. We thus have 

[6#51 ~< (Ib#l of Section 4) '  (2/L)  ~-"i)/2 

and 

16251 ~< (162i of Section 4)- (2/L) ~" nl)/2 

and the proposition is proved. | 

6. R E F I N E D  B O U N D S  ON T H E  M O T I O N  OF A. A N D  Ia. 

We have proven a rough picture on the trajectory in Sections 3-5. 
Now we can refine the result and derive more detailed information on the 
motion of Yf~. 

6.1. Bounds on n l  

Proo f  o f  Theorem 2 .3 (0 .  This follows easily from the rought bounds 
(2.3) on the motion of A/~n. Combined with the definition of nm, they yield 

t(2L2)"~ >~ ]A#,~] ~> (no+n1)  - l  (6.1) 

t(L2/2) n~ l <<. ]Al~,~_~[ <~ (no + n ~ -  l )-~ <~ (no) -~ (6.2) 

To get the lower bound, we subtract In(no) from both sides of (6.1): 

n I ln(2L 2) + In [(no + nl)/no] ~ ]lntl - I n  no 

Since ln(1 + x ) < . x  (for x~>0), we have 

Iln t] - In no >/[In tl - In no 
nl >~ ln(2L 2) + 1~no 2 In L + l 

The upper bound can be obtained in a similar way. | 
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6.2 .  

with 

and 

R e f i n e d  B o u n d s  o n  Ap,, 

Theorem 2.3(ii) is proved by the following two lemmas. 

L e m m a  6.1. Consider the case when Itl ~< (10no) -1. Define 

n - - 1  n - - 1  

S , -  2 li., Tn =- ~ Ik/Sk 
k - - 0  k = l  

Then (i) (2,,)oritio~I satisfies 

(ii) 

)~ ~< 2o 'l + 3Sn + 4[(no + rt) 8/9 - (no) 8/9] 

>~ 201 + 3S, - 3[(n 0 +/7) 8/9 _ (no) 8/9 ] 

Apn satisfies (for n ~<nl) 

d # ,  = tL  2" exp{ - F ~ }  

IF, - I  C' 7T,,I ~<C+ lnn o 

where C and C' are positive constants depending on L. 

kemma 6.2. For n ~ n l ,  

h i _  <~ S,, <~ nI  + 

For 17<~n<~n 1, we have (i) 

nI,, + 1 5 I  - 16I~ <~ S~ <~ nI,, I + 151+ - 14I~1 

and (ii) 

and (iii) 

n -- 16 + 15I_/I+ <~ S,/I,,  <<. n -- 14 + 15I+/I_ 

{ 4  ln(n - 16) + 109R + ln(R/15) 
T. ~> I n ( n -  14+ 15R)+ 1 0 9 / R + l n ( 3 +  15R) 

where 1 <~ R - I +/I_ < oo. 

Hara 

(6.3) 

(6.4) 

(65) 

(6.6a) 

(6.6b) 

(6.7) 

(6.8) 

(6.9) 

(6.10) 
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Theo rem 2.3(ii) is an immedia te  consequence of L e m m a s  6.1 and 6.2. 

Proof of l_emma 6. I. (i) Tak ing  the inverse of bo th  sides of R1, we 
have 

2,-~ = 2 - 1 1 1  + 2 ( _ 3 1 / 2 + 3 2 1 ) ]  1 

Since I is of  order  1, and 621 of order  (n o + n)-1/9, we can use 

1 
l+X<~l_x<<.l+x+2x2 for O ~ < x ~  1/2 

to obta in  

2-1 + 31/2 - 621 ~< 2' ~< 2-1 + 3I/2 - 321 + 22(21+ )2 

Summing  these inequalities f rom n = 0 to n -  1, we obta in  

n - - I  

2s ~-2o~>j ~ (3Ik/2-62 I) 
k=O 

>~ 3Sn/2 - 3 [(no + n) 8/9 - (//0)8/93 

where we used the bound  ]62~[ ~< (n o + k) 1/9. 
The upper  bound  is obta ined  similarly. | 

(ii) Mult iplying the recursion for A#k, 0 ~< k ~< n -  1, we obtain  

t k = 0  A # k  k = 0  

-- L 2n exp( -- F . )  

Using - - x  - x 2 ~< ln(1 - x) ~< - x  for x ~ 1/2, we obta in  

n - - 1  

--F,, = ~ ln(1 - 2ilk~2 + 6#2/2) 
k = O  

n - - i  

~< 1/2 ~ [ - 2kI~ + (no + k)-~~ + (no + k)-1/6 IJ~l 2 / 3 ]  

k=O 

n - - 1  

~>1/2 ~ [--2klk-- 2(no + k)-l~ + k)-l/6lA~l 2/3] 
k=O 

By the rough bound  on A#, 

[Zj~k] ~ tA/2nt_l I (L2/2)k nl+l 

<~(no+nl-1) X(L2/2)k-nl+x 
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and 

n - - I  

(no + k)-l/61A#k] 2/3 
k - O  

n 1 

~<(nO)-l/6(noq_rtl_l) :/3 E (L2/2)2(k hi+l)/3 
k = O  

<~ 2(no) - 5 / 6  

It we estimate other summations over k similarly, we obtain (6.6a). 
To prove (6.6b), we have to estimate the difference between F~ 2klk/2 

and T,/3. First, 

n - - i  

~= 2kIk/2- Tn/3 
k 0 

n - - 1  

= 2 [;~k/Z--(3Sk) 111k+,~1~/2 
k = l  

n 1 

~<I+ ~ [,~/2-(3s~) -1] +�89 -'/2 
k = l  

Then use the bound (6.4) on )-k, and estimate the summation. | 

Proof of Lemrna 6.2. We use the uniform bound I <~In<<.I+ 
together with the limiting property of I n, 

exp( - 2L 7- n/2) ~< in/i,, <~ exp(2L 7 ,,/2) 

which is proven in Appendix C. 
Condition (6.7) is immediate from the definition of Sn. 

14 n 1 n 1 

(i) Sn<~ ~ Ik+ ~, Ik<~15I+ + ~ Intexp(ZL 7 k/z) 
k - - O  k = 1 5  k = 1 5  

~< 15I+ + (n - 14)In~ 

Similarly for the lower bound. 

(ii) We have 

n - - I  14  n - - I  

S,/I, = ~ Ik/I . <~ ~'~ I+/I + Z exp( 2L7 k/2) 
k = O  k = O  k = 1 5  
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and (iii) 
n - - I  15 n i 

7",,= Z (S~/Ig) I=E(''')~- E ( ' ' ' )  
k =  1 1 16 

Use the bound (ii) and estimate the summation. | 

6.3. Bounds in Region II 

To trace the trajectory in region II, we use the following lemma. 

L e m m a  6.3. L e t 0 < t < ( n o )  - l . T h e n f o r 0 < _ m < ~ 9 ( n o + n l ) ,  

99 L2 m /Tn~ + m 101 L2,~ 
 oo 

is a direct consequence of this lemma and the rough Theorem 2.3(iii) 
bound on A#.I. 

Proof of Lemma 6.3. By the recursion for fi, we can easily derive the 
rough bound: 

(L2/2) m ~ fi~, + m/fi., ~ (2L2) m 

andtheexpress ion /2,1 LZm ~_]J ( 6# 3 ) + " -  
f in1  k = 0 

Estimating the product by taking the logarithm, with the bound 

1~#3/L2/51 <~ (no + nl )(no + n)-3/2(L2/2)nl-" 

we can derive the lemma. | 

7. THE INFINITE-VOLUME LIMIT OF pc(A; Ao) 

Proof of Theorem 2.5. Take two tori A 1 and A 2 of side L NI and Z N2, 
respectively (for definiteness we take NI<N2),  and apply n BSTs 
( n < N 1 - N o )  t o  (D 4 systems defined on A ~ and A 2, respectively. We 
abbreviate 

#1_--uc(2; A1 ) , #2_--~c(2; A2 ) 

We also denote by /~,AJ the coefficient #n obtained by applying n BSTs to 
~0 4 system on A j w i t h / t o = #  i. By definition of #c(2; A), 

(l~i),,A;e [- - (no+n) -3/2, (no+n) 3/2] _=/,, (7.1) 
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for n ~< N 1 -  N O and n ~< N 2 - - N o ,  respectively. Now consider the identity 

1 2 1 1 1 2 
- # n , A 2 1  = -t- # n , A 2  - -  #n ,A2[  I # n , A  1 I#,,.Aa #,,.A2 

Fix n sufficiently large, and choose N~ sufficiently large (compared with n) 
so as fulfill 

�9 1 1 I#n,A' -- #n,A21 ~ (no + n) 3/2 

(That we can choose such NI is a consequence of the analysis of Gaw~dzki 
and Kupiainen. See Ref. 16, Section 12.) Then for (7.1) to hold, we must 
have 

- -  I # n , A l  - -  # , , , A 2 [  - t -  - -  #hA ~< [#,,At / z , , ,  

~< 3(n o + n)-3/2 (7.2) 

On the other hand, for the difference of the LHS, we have [see (2.3)], 

121 A 2 __ 2 #.,A21 >~ (L2/2) n I~  ~ - #21 

Thus, for any n, 

I#,.(A 1) - #,.(A2)I ~< 3(2L 2)n(n 0 + n) -3/2 (7.3) 

holds for NI, N2 sufficiently large (depending on n). This immediately 
means that the existence domain of #~.(A) shrinks to some point in R when 
A - - - >  Z 4 -  I 

A P P E N D I X  

In this appendix, we list and prove some of the necessary properties of 
Gaussian propagators, kernels, and integrals. We first list some formulas 
and abbreviations concerning the Fourier transformation, on which the 
analysis heavily depends. 

We use the following abbreviations: 

I sin(pv/2) 
f~(P) =- L" sin(pv/2L n) 

v = l  

d 

g,,(p)= 2L 2"~ ~ [1-cos(pv/L")] 
v - - 1  

d 

,uCU~ ~- #o + 2 ~ (1 - cos Pv) 
v = l  
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Fourier representations of various kernels are found in Refs. 1! and 
13. We here present only that of G~, on which we will prove somewhat 
detailed bounds. G(f :~) of infinite volume with infrared regulator ~ is given 
by 

d 

[f~(p + 2rtt)] 2 

r,,, <~o/2 # + 4 �9 ap,o Y,f {2/_," sinE(p, + 2~t~)/2L"] }~ 

(iv) Bounds on finite-volume G~ are obtained by periodizing G . .  That is, 

R ~ L N - n z  d 

A1. Bounds on Gaussian Kernels 

Proposition A.1. For # ~ 0 ,  the massive Gaussian kernels satisfy 
the same bounds as the massless ones, i.e., (2.42)-(2.46) of Ref. 16. 

Proof. These are proven by the direct analyis in momentum space, in 
eaxtly the same way as in Refs. 11 and 13. II 

For the difference between two massive Gaussians, we have: 

Proposition A.2. Let #1, #2>0.  Then the Fourier transform of 
G~ "~) satisfies: for IIm p~] <~4/5, (Re Pl, P2,..., Pd) e [--~,  ~]a l, 

[ [C(n#l)(p)]--1__ [-C(n#2)(p)]--i[ ~ [ # 1 ,  #2[ 7c7d+4d2 (A.I) 

Also, in configuration space, 

[(~r -- (~(,u2))a_y [ ~ [/,ll -- #21 7,c8d+ 5 d U +  3 e-,qlJ; yl (A.2) 

and similar bounds for the differences of 

"~Y -- J~Y and c?~ ~ y  - 0~-~r J~-yl I~-yl 

hold. 
Moreover, 

holds. 

(.~-("% -(J~u2))~,  I ~<const. I# 1 --#21e ~l;~-~l 
- -  17 ," j:~, (A.3) 
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Proof. This is also straightforward. Use the Fourier representation 
and, taking all the necessary differences, follow the line of argument of 
Refs. 11 and 13. | 

When the "renormalized mass" ~t, is quite large, the following is more 
useful. 

Proposi t ion A.3. L e t / t > 0 .  Then 

(G~))o~<<.min{#-~,const(d)exp[-(�89 l )]}  (A.4) 

where const(d) depends only on the lattice dimensionality d, and 

I(JL~'~)~y I <~ const(d, L ) ' y  -~/2 exp( - fl l~ - Yl) (A.5) 

where const(d, L) depends only on d and L. 

Proof. (G(f))0~ ~< # -~ is a direct consequence of the Fourier represen- 
tation of G,. The exponentially decaying property is proven by a standard 
technique of complex translation (see, e.g., Ref. 11). Bounds on ~ can be 
proven similarly. | 

We will use the following proposition in Part II. 

Proposit ion A.4. Consider G(f ~ with 

Then (i) 

/~ ~> 100 (A.6) 

#s - 2n/~/~.) ~< (G~))0 o ~ #2~ (A.7) 

(ii) For 1 ~< Ixj ~ -= max.  Ix.l, 

(G~U))ox ~< 128/~. 3/2 e x p [ -  (#./2)~/2(x~- 1 + L n)] 

and for x = (xl, 0, 0, 0), xl >~ 1, 

(G~,))ox >~ 10-2(/2, + 3r~2) 3/2 

x exp[ - (#, + 3 9 2 ) l / 2 ( x  1 - 1 + L - " ) ]  (A.8) 

Further (iii) 

(G~)o~ t 1, Ixj --- 0 
(G!,~))o0 <~ I 200#r71/2' ix] o~ = 1 (A.9) 

200/~ -1/2 exp[ - (#~ /2 )m( j x l~  - 1)], {x[o~ >1 1 
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Proof. 

(i) 
(ii) 
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We abbreviate G(f / as Gn. 

(Gn)oo is bounded by the direct analysis in the momentum space. 

We first rewrite G(ff ) by introducing p; =-Pv + 2~ztv 

f~ dd- ip (c(.,v~ 
~" 1~ ~-~c-~L,)e-~ (2re) d-1 exp(ipx) 

d 
xI-I ( s i n ( p ~ / 2 )  ~2 

2 \L" sin(pv/2L~)J F(p, xl) 

F(p, xt)=_fE_ dO ( s i n ( 0 / 2 ) ) 2  . - -  exp(iOxl) ~co,~L ) 27~ \ L" sin(O/2L~)J 

1 
X ...... 

B(p) + [2L" sin(O/ZL")] 2 
d 

B ( P ) - / t + ~ (  2L~ sin ~-PT~")~2L J 

Now writing 

(.L sin(0/2) )2 
 LniJ 

L n -  1 

= exp[i0(t -- L-n)]  L -2n exp[ - iOL-'~(m +/)] 
m , t  = 0 

and using residue calculus, we have (in the complex Pl plane, contributions 
from the path Re z=  ++_~L" cancel!) 

F(p, x,)= ~ f B ( l + 4 ~ , )  J-l/2 exp[-Oo(xx- l + L-n) ] 

~" 1_-- exp(-- 00) -~2 
x [L ' [1  -- exp(--L-~Oo)] J 

with 

Oo- L n cosh-1(1 + B/2L 2n) 

Now estimating 00 and performing the integral over p, we can obtain the 
upper bounds 

(c(i,,)~ <~ 4#- 3/2 exp[ - ( ~ / 2 ) 1 / 2 ( x l  - 1 + L-")] 
"~n JOx 
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Similarly, for x = (xl, 0, 0, 0,...), 

l ( 2 )  2d- 2 e x p { -  [# + (d-1)lc2]~/2(xl - l + L-'~) } 
>1- 4 [ # +  (d - -  1)7C2"] 3/2 

[Note that because F(p, x~) is nonnegative, so is the integrand. So we can 
get a lower bound by estimating some suitable part of the integration.] 

(iii) This follows immediately from (i) and (ii). | 

APPENDIX  B. RELATIONS BETWEEN q~ A N D  Q 

We first recall the result of Gaw~dzki and Kupiainen. 

P r o p o s i t i o n  B.1. Let #~>0. Then 

(q~n, (G(n#)) 1, q~jn)= 
x.y ~ An 

Proof. Follows directly from the Fourier representations of Gn 
and tin. | 

We can thus express (4~", (G(f)) 1, ~bn) as a function of ~g" restricted to 

Now for the mutual difference between above quantities corresponding 
to #1 and #2, we have: 

P r o p o s i t i o n  B.2. Let #1, #2>0 .  Then 

L 

= (@,,, (G(f2))-,, ~n) + (#1 _ #2) f dx (0 ; )  2 
.~  n(#2)q~n 

__ ( # 1  __ # 2 ) 2 ( ( p n ,  31, .  cI)") 

with 

This expresses 

d# GnO, l,(~b n ) 

l(6I,~)~yl <~const 'e -/~Lx yl 

as d~af~)(~ ") x exp(correction) 
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Proof. 

with 

By the definition, we have 

(O", (G}f)) -1, �9 ~) - (O ~, (G(f2)) - ' ,  O ' )  

_ (#1  # 2 ) ( d z ( 0 ~ ) 2  = ~ q)yI.~q)~" 
o ~ln = ,~r (n~2)~bn y,z ~ An 

6~ - (G(f~))~ 1 - (G~u2))y zl -- (/11 _ #2) f d ~  .~r162 (2;)z 

By the Fourier transform, 

I y  z = L d ( n -  N) E e i p ( y -  z ) I ( P )  

pv ~ 27cLn Nzd 
Ip~l < 

with 

7(p) = [ Q I f ~ ( p ) ]  l _  [C~#2~(p)] , 

x [ f . ( p  + 2m)]  2 

Now by tedious but direct computation, we can rewrite 

I(p)  = (#1 _ p2)2 ~ ( p )  

with 
,~)(p) = [ @ , ~ ( p ) ]  1 [ @ 2 ~ ( p ) ]  -2 

[ L ( P  + 27rt) f~(p + 2~zs)] 2 x 
[#2 + g.(p  + 2m)]2[#2 + g.(p  + 2~rs)]2 

g. (p  + 2rct)[g.(p + 2m) - g.(p  + 2~zs)] • 
[#1 + g~(p + 27rt)] [#~ + gn(P + 2rcs)] 

Now for this 61, we can prove: 

Lemma B.3. 6I(p) is 
P2,..., pd) E [--~, rr] d (el(d) is 
satisfies there: 

analytic for lira Pll ~< el (d) ,  (Re Pl,  
same as e of LemmaA.5, Ref. 11), and 

I ~ P ) I  ~< 25+dTZ7a+2( d+ 2) 3 

Proposition B.2 immediately folows from this lemma, by a standard techni- 
que of complex translation. | 
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Proof of Lemma B.3. The analyticity of M is proven in almost the 
same way as Lemma A.1 or A.5 of Ref. 11. [Because the s = t = 0  term is 
absent in the summation, the zeros of # + g.(p + 27zt) and # + g.(p + 2rcs) 
never coincide in the denominator. Thus, they are canceled b~ zeros of 
g.(p + 2~t) or g.(p + 2~s) in the numerator.] The bound on 6I is proven 
by establishing various bounds as was done in the proof of Lemma A.1, 
Ref. 11. II 

APPENDIX C. PROPERTIES OF/,,  

We prove the following proposition. 

P r o p o s i t i o n  C.1. Let/z/> 0. Then for L ~> 100, 

0 < I(.~) ~< I+ = 37/2+ �89 L (C.1) 

For massless I. ,  we have more refined bounds 

10 2(ln L- -  3) r  ~<I+ (C.2) 

(We can thus choose I = 10 -2 for L~> 100.) As for the limit property of 
massless I . ,  we have, for n~> 15, N>~30+2n_ and 15~<n~<n, 

Iln(I.//.)[ ~< 2L 7-"/2 (C.3) 

ProoL The proof is carried out by direct but tedious calculations. We 
use the following abbreviations: 

E = E 
t teZ4,1tv] < Ln/2 

E =- Z 
s s e Z 4 ,  ls~l<Ln+l/2 

F.(p; t ) -  [ L ( P  + 2~t) ]2[g.(P + 27rt)] -1 

G.(p; t) =- [g.(p + 2zt)] -~ 

We further abbreviate F.(p; t) and F .+ l (p ;  t) as F(t) and F'(t), respec- 
tively, and similarly for G's. 

We first express I. as a sum of nine terms: 

I. L2n+2G = f~0d~ f dy {2[(LZf#.)L;~Le-- (~.+ 1)~;~,]( O)L.+I~:C.~ 

- [ ( L 2 ~ . ) L ~ L ~ ] 2 +  [ (~.+ IL~,] 2 } 

= 2(11. + I3. --/4n + I5.) -- I2.-- 16n + 17. -- 18. + I9., (C.4) 
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where 

F . v"  Z, .(p, t)[G.(p; t)3 ~ 
11, L4(n-N) Z.~ p Z, F,,(p; t) 

iz =L4~ N)~" (Z,F.(P; t)[G.(p; t ) ] )  2 

" ~ Z 
p p~2~Ln-NZ4,]p~l < rc,(3v, lpvl >Tr/L) 

and for i=  3, 4 ..... 9, 

with 

L,.-L 4~'+~-N) ~ /~,~(P) 
p E 2~Ln+ l-Nz4,[pv I < ~z 

73~(p) _= ~ , # o  F,+ ,(p; Lt)[G,,+ I(P; Lt)] z 

L.(p)- 

E,F.+l(p;Lt) 

7~.(p)- 

76.(p)- 

Lo(p)- 

7,.(p)-~ 

~f~s~O Fn+ I(P; s)[Gn+ I(P; s)] 2 
Z~ F. + ,(p; s) 

Fn+ I(P; 0)[G.  + I(P; 0)] 2 E~r LZ4 F. + ~(p; s) 
~ F,+ ,(p; s) Y~t F,+ ~(p; Lt) 

Z, F'(Lt) G'(Lt) Y~,~o F'(Lt) G'(L(t) 
Z, F'(Lt) 2,  F'(Lt) 

~.s F'(s) a'(s) Y~s~o F'(s) a'(s) 
Z,  F'(s) Z~. F'(s) 

F'(0) G'(0) Z ,  Z,,~, ~ LZ4 F'(Lt) G'(Lt) F'(s) F'(s') 
E,,c Z~,~' F'(Lt) F'(Lt') F'(s) F'(s') 

~t~(P)  ~" F ' (O)  Gt(O) Z t , t '  Z g  ~ L Z  4 F ' ( s )  G ' ( s )  F ' ( L t )  F ' ( L t ' )  

Z,.,' Zs,s' F'(Lt) F'(Lt') r'(s) F'(s') 

Now for these I,,,, we can prove: 

t . e m m a  C.2.  (i) 0 ~< Ii,. ( i =  1, 2 ..... 9). 

(ii) I2n ~< Iln and I8,, /9, ~< I5,. 
(iii) For L~> 100, 

0.011 In 0.095L + 0.007 ~< I1, ~< -~ In L + 0.044 

I3,, ~< (4L - 2) 4, /4, ~< 0.004, I5, , ~< 6.063 

I6n~<~(2L- 1) -2, I7,~<0.164 
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(iv) ForL>~100, N~>n+40,  andn~>10, 

IIi, n/I i ,n + 1 - -  11 ~ L20 -- (N--  n)/2 ..~ L 5 - ,/2 

Proof. (i) Obvious (F,, G, >~0). 

(ii) Compare 71, and I2,. Defining 

Z, F(t)" ('") ( . . . )_  
z , r ( t )  

we have 

i ln(P) = ( {G( / ) )  2 ) F ~  ( (  {G(t)} )F) 2 = 73n(p ) 

The second inequality is proven by explicitly calculating the 
between 15 and I8 or 19, and using 

(c.5) 

difference 

a.+ ,(p; s) ~< 6.+ l(p; 0) 

Straightforward calculation. Use, on occasion, representations 

I .  >1 11. - 214. - -  I6n 

As for the limiting property, choose n ~> 15 and N~> 2_n + 30, and consider 
15 4 n 4 n. Then, writing 

In+l=I.+-I 211,"+1/1--~+1 + "'" 

Also, 

(iii) 
like (C.5). 

(iv) Because all Ig,. are well defined and finite and have limits as 
N -  n ~ ~ and n ~ 0% this is a quite reasonable conclusion. To prove this, 
use 

- - . . ~ - - ~ < m a x  for A~,Bi>0 minAi <Z iA i  Ai 
Bi EiBi  i ff~ 

to bound the ratio I~,./I~,.+1 by the ratio of integrands I~.~(p)/Ii,.+ I(P) for 
]pvl>~L "-N. The contribution from ]p~l<L "-N is extremely small 
(relatively of order L ('-u)/2). | 

Now, by Lemma C.2, we can easily prove Proposition C.1. By (i) and 
(ii), (C.4) can be bounded as 

I.<~2(Iln+ I3.+ Isn)+ IT.+ Ig. 

~< 211n -k 315. + 213n -[- I7n <~ 37/2 + �89 In L 
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and using the bounds (iv), we have 

II~/I, + ~ - I I ~< �89 22 (N- n)/2 ..~ L 7 - n/2) ~ L 7-~/2 

Thus, for 15 ~< n ~< _n, 
n 1 

I L 7 k/2) [I (1+ 
- -  ~-1 Ik 1 k=n 

= >~I]  ( l - L 7  k/2) 
k = n  

Taking the logarithm (note that 7 -  k/2 <<. -1/2),  we obtain 

n - - 1  

Iln(I~/l~_)l ~ ~ I-L 7-k/2 + (L7-~/2)23 ~ 2L 7-~/2 I 
k = n  
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N O T E S  A D D E D  IN P R O O F  

In this paper, we have introduced (as in Ref. 16) an infrared regulator 
= 1 to make massless Gaussian propagator G, on a finite torus well- 

defined. Note that Gaussian kernels s]~, Q,, J,,, do not depend on ~. Also 
note that the inverse of Gn is well-defined without the infrared regulator. 

Rigorously speaking, Eq. (2.30) of Ref. 16 (or Eq. (4.4) of this paper) 
holds only for G ,  1 without the massless mode. To use Eq. (4.4), we add 
and subtract ~L 2n-4(N n)(~'~(pn)2 from the effective Hamiltonian and 
express its Gaussian part as (~n, G~I, q~n)= (~n, --,~(;L2~ 4" ) - -  
~ L 2 n - 4 ( U - n ) ( ~  (pn)2. NOW the first term is handled by (4.4), while the 
second term is exactly transformed into - ~ L  2" + 2- 4(x- n- 1)(Z q~n + 1)2. If 
we combine these two, we can obtain Eqs. (3.1) and (4.8) with Gaussian 
propagators G~ ~ without the infrared regulator. 
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